CHAPTER 2

RADIO TIME SIGNALS

200A. History of Time 2-3
200B. Time Zones 2-4
200C. The National Institute of Standards and Technology (NIST) 2-5
200D. U.S. Station WWV Broadcasts 2-9
200E. U.S. Station WWVH Broadcasts 2-10
200F. Argentina 2-11
200G. Belarus 2-11
Station List 2-12

CHAPTER 2

RADIO TIME SIGNALS

200A. History of Time

Keeping track of time dates as far back as the Ice Age. Over 20,000 years ago hunters scratched lines and made holes in sticks and bones. Scientists believe that they were possibly counting the days between the phases of the moon.

Many civilizations over the years have developed ways to keep track of time. However, one thing remained the same no matter the location or the century, time was tracked as equal and constant increments, thus the creation of clocks. Clocks also evolved over time starting with obelisks and complicated water clocks to the atomic clocks currently used today.

Obelisks were used in ancient Egypt to tell time and as a result they found the longest and shortest days. It was observed that the shortest shadow cast by the obelisk always pointed in the same direction regardless of the season. The meridian line was discovered as a north and south line joining these shortest shadows. Sundials were created using the obelisk theory, but it was found that these smaller obelisk versions were not as accurate and hard to read.

Sundials only worked on sunny days, thus the water clock was created. A container was filled with water and it flowed out at a constant rate and was used to tell time, but it also wasn't very accurate. In 1092, a Chinese monk named Su Sung created a water clock very similar to mechanical clocks known today. This water clock was five stories tall and had a very large water wheel.

The first known mechanical clock was invented in the 13th century, it was similar to the water clock but used mercury and it controlled the drum at a more constant rate. Galileo Galilei was the first to study the pendulum and Christiaan Huygens used Galileo's work to create the first pendulum clock. Over time they found that the longer the pendulum, the more accurate the time. This is why pendulum clocks are a tall rectangular shape. Jost Burgi invented the minute hand in 1577 for an astronomer. In the early 18 th century a telecommunications engineer, Warren Marrison, developed a very large, highly accurate clock based on the regular vibrations of a quartz crystal in an electrical circuit, thus creating the first quartz clock.

With the creation of clocks, the problem arose where every city around the world was on its own time, basing noon on when the sun passed over the town. To correct this problem, Great Britain was the first country to standardize time. Greenwich Mean Time (GMT) was the solution. England's Royal Greenwich Observatory located on the zero-degree longitude meridian, became the center of the first time zone and leading the way to the concept of time zones.

In 1884, delegates from 25 countries attended The International Meridian Conference in Washington, DC, establishing time zones one hour apart, based on solar time (high noon is when the sun reaches the center meridian of that time zone).

The National Institute of Standards and Technology (NIST) in the U.S. built the first atomic clock in 1949. These clocks are the most accurate time and frequency standards known and is based off of atomic physics.

The system of Coordinated Universal Time (UTC) came into use on January 1, 1972. UTC replaced the term GMT but the time remains the same. It differs from your local time by a specific number of hours. The number of hours depends on the number of time zones between your location and the location of the zero meridian (which passes through Greenwich, England). When local time changes from Daylight Saving to Standard Time, or vice versa, UTC does not change. However, the difference between UTC and local time does change-by 1 hour. UTC is a 24 -hour clock system. The hours are numbered beginning with 00 hours at midnight through 12 hours at noon to 23 hours and 59 minutes just before the next

RADIO TIME SIGNALS

midnight. See "The American Practical Navigator" (Bowditch) (Pub. 9) for a full description of UTC.

200B. Time Zones

Today the world is split up into 25 time zones. The system is centered on zero-degrees longitude in Greenwich, England (See sec. 200A, para 6). The graphic below shows the amount of hours that each area is offset from UTC.

The military uses the phonetic alphabet for time zones; therefore each time zone also has a letter associated with it. The term Zulu is " Z " which is UTC time.

Some countries observe daylight saving time (DST). Each country has its own start/stop days and times.

In the US we have names for our time zones, starting from the east to west they are:

Eastern Standard Time (EST)
Central Standard Time (CST)
Mountain Standard Time (MST)
Pacific Standard Time (PST)
Alaskan Standard Time (AKST)
Hawaii-Aleutian Standard Time (HST)
See graphic below for a map of US time zones.
The US starts daylight savings time at 2 a.m. local time on the 2nd Sunday in March and clocks are changed ahead one hour. At 2 a.m. on the 1st Sunday in November is when clocks are moved back one hour.
Parts of Arizona, Puerto Rico, Hawaii, US Virgin Islands, Guam, The Northern Mariana Islands and American Samoa do not observe Daylight Savings Time.

During daylight savings time, the US Time Zones go from "Standard" to "Daylight", for example Eastern Daylight Time (EDT).

200C. The National Institute of Standards and Technology (NIST)-in general

The NIST has two radio stations broadcasting time and frequency information 24-7 for the United States; stations WWV (Fort Collins, CO) and WWVH (Kekaha, HI). They broadcast time announcements, standard time intervals, standard frequencies, UT1 time corrections (Astronomical time for Universal Time), a BCD (Binary-coded Decimal) time code, geophysical alerts and Global Positioning System (GPS) status reports. They operate in the high frequency (HF) portion of the radio spectrum. Each station radiates $10,000 \mathrm{~W}$ on 5,10 , and 15 MHz ; and 2500 W on 2.5 and 20 (WWV only) MHz. Each frequency is broadcast from a separate transmitter and carries the same information to ensure one frequency is usable at all times. These same broadcast are also available by telephone. WWV can be called at 3034997111 and WWVH at 808 3354363.

200C. 1 Time Announcements

Voice announcements are made from WWV and WWVH once every minute. The announced time is "Coordinated Universal Time" (UTC).

RADIO TIME SIGNALS

200C. 2 Standard Time Intervals

The pulses mark the seconds of each minute, except for the 29th and 59th second pulses which are omitted completely.

200C. 3 Standard Frequencies

The 440 Hz tone, also known as A 440 (A4) is the international standard for musical pitch, musical note A above middle C. They also transmit a 500 Hz tone and a 600 Hz tone (See diagrams on pages 2-9 and 2-10). The NIST started broadcasting the A440 from WWV in 1936. In 1939 it served as the audio frequency reference for calibration of musical instruments. The 440 Hz tone can be heard on WWV and WWVH stations and is omitted from the first hour of the UTC day.

200C. 4 UT1 Time Corrections

UT1 is the Astronomical time for Universal Time (UT). Coordinated Universal Time (UTC) is the mean solar time at zero-degree longitude. UTC time is based on atomic clocks which are more stable than the Earth's rotational rate. The International Earth Rotation and Reference Systems Service (IERS) measures Earth's rotation and publishes the difference between UT1 and UTC. The actual correction is known as a leap second. A leap second is the second (most corrections are tenths of a second) added to UTC in order to keep it synchronized with astronomical time.

200C. 5 BCD Time Code

Binary-coded Decimal (BCD) time code is computer time. NIST broadcasts this code on a 100 Hz subcarrier given in a serial fashion at a rate of one pulse per second. The information carried by the time code includes the current minute, hour, and day of year and may be used with the same accuracy as the audio time frequencies. The appropriate seconds markers may be emphasized, for example by lengthening, doubling, splitting or tone

200C. 6 Geophysical Alerts

The National Oceanic and Atmospheric Administration (NOAA) broadcasts geophysical alert messages that provide information about solar terrestrial conditions and are updated at $0000,0300,0600,0900,1200$, $1500,1800,2100$ UTC.

To obtain alerts:
*By phone: (1) 3034973235
*Radio station broadcasts: WWV \& WWVH
*Space Weather Prediction Center Website: http://www.swpc.noaa.gov
*Tips on viewing the Aurora: http://www.swpc.noaa.gov/products/aurora-3-day-forecast

Definitions:

*A [A\#] \& K indices are measurements of the behavior of the magnetic field in and around the Earth. K-index ranges from 0-9. A-index ranges from 0-400. K-index is broadcast at [K TIME] 0000, 0300, 0600, 0900, 1200, 1500, 1800, 2100 UTC.

RADIO TIME SIGNALS

*Geomagnetic storms are disturbances in the geomagnetic field caused by gusts in the solar wind that blows by Earth.
*Radio blackouts are disturbances of the ionosphere caused by X-ray emissions from the Sun.
*Space weather describes the conditions in space that affect Earth and its technological systems. Includes all observed geomagnetic storms, solar radiation storms (proton events) and radio blackouts.
*Solar flux [\#] is a measurement of the intensity of solar radio emissions with a wavelength of 10.7 cm (a frequency of about 2800 Mhz). Range varies from 50 to 300 .
*Solar radiation storms are elevated levels of radiation that occur when the numbers of energetic particles increase.

RADIO TIME SIGNALS

K indices $[\mathrm{K} \#]$	Geomagnetic Storms	Solar Radiation Storm Level [S level]	Radio Blackout Level [R level]	Space Weather [space level]
$\mathrm{K}=9$	G 5	S 5	R 5	Extreme
$\mathrm{K}=8$	G 4	S 4	R 4	Severe
$\mathrm{K}=7$	G 3	S 3	R 3	Strong
$\mathrm{K}=6$	G 2	S 2	R 2	Moderate
$\mathrm{K}=5$	G 1	S 1	R 1	Minor

Message Format:

Sections	Basic Intro	Solar-terrestrial indices for [DATE] follow.
1	Current A \& K indexes	Solar flux [\#] and mid-latitude A-index [A\#]. The mid-latitude K-index at [K TIME] on [DATE] was [K\#].
	Past 24 hours	Space weather for the past 24 hours has been [space level].
	3	Radio blackouts reaching the [R level] occurred.
3		Space weather for the next 24 hours is predicted to be [space level].
		Solar radiation storms reaching the [S level] are [likely/expected].
Alternate Section 2		Radio blackouts reaching the [R level] are [likely/expected].
Alternate Section 3		No space weather storms were observed for the past 24 hours.

Effects of Geomagnetic storms (storm level):

	HF Radio Communications	Satellite Navigation	Low Frequency Radio Navigation
Extreme	May be impossible in many areas for 1-2 days	May be degraded for days	Can be out for hours
G5	Sporadic	Degraded for hours	Disrupted
Severe	Intermittent	Intermittent	Problems might occur
G4	No effects	No effects	
Strong	G3	Can fade at higher latitudes	
Moderate			
G2			

RADIO TIME SIGNALS

	HF Radio Communications	Satellite Navigation	Low Frequency Radio Navigation
Minor	No effects	No effects	No effects
G1			

Effects of solar radiation storms (S level):

	HF Radio Communications
S5	Complete blackout and errors possible through the polar regions.
S4	Blackout and errors through the polar regions over several days likely.
S3	Degraded through the polar regions and navigation position errors likely.
S2	Small affects through the polar regions and navigation at polar cap location possibly affected.
S1	Minor impacts in the polar regions.

Effects of radio blackouts (R level):

	HF Radio Communications	Satellite Navigation	Low Frequency Radio Navigation
$\mathbf{R 5}$	Complete blackout on the entire sunlit side of the Earth lasting for a number of hours. This results in no HF radio contact with mariners in this sector	Increased errors in positioning for several hours on the sunlit side of Earth, which may spread into the night side	Experience outages on the sunlit side of Earth for many hours, causing loss in positioning
$\mathbf{R 4}$	Blackout on most of the sunlit side of Earth for 1-2 hours	Minor disruptions possible on the sunlit side of Earth	Outages of signals cause increased error in positioning for $1-2$ hours
$\mathbf{R 3}$	Wide area blackout, loss of radio contact for about an hour on sunlit side of Earth	No effects	Signals degraded for about an hour
$\mathbf{R 2}$	Limited blackout on sunlit side, loss of radio contact for tens of minutes	No effects	Degradation of signals for tens
of minutes			

Inquiries regarding these messages should be addressed to Forecasts and Analysis Branch, Space Environment Center, W/NP9, 325 Broadway, Boulder, CO 80305-3328. Phone: (1) 303497 3171, e-mail: rwc.boulder@ noaa.gov

200C. 7 Marine Storm Warnings

As of January 31, 2019, the NWS discontinued disseminating High Seas and Storm Warnings on WWV and WWVH radio covering the Atlantic, Gulf of Mexico, and the Pacific.
This service was terminated because weather information in the current broadcast format does not
support frequent enough updates for changes in marine weather and cannot provide enough detail in the allotted window required by mariners to avoid hazardous weather. Additionally, alternative technologies and numerous media outlets that provide weather information in various formats have overtaken the need for providing weather information through the WWV and WWVH signals.

For more information about marine storm warnings, write to: National Weather Service, NOAA, 1325 East West Highway, Silver Spring, MD 20910 or visit http://www.nws.noaa.gov.

RADIO TIME SIGNALS

200C. 8 Military Auxiliary Radio Service (MARS)

WWV and WWVH announce upcoming MARS and U.S. Department of Defense (DoD) exercises. MARS exercises take place several times a year, on a regional and nationwide basis. The WWV and WWVH announcements provide information to amateur radio participants regarding purpose, dates, times and location of the exercise and other information. WWV airs MARS announcements on the 10th minute of each hour, and WWVH uses the 50th minute. Each announcement will air for about two weeks, prior to and during each exercise. For more information about MARS, see: http://www.usarmymars.org and http://www.mars.af.mil.

200C. 9 Notice Advisory to NAVSTAR Users (NANU)-GPS status reports

The United States Coast Guard and the GPS Operations Center (located at Schriever Air Force Base, CO) provide information on the general health of individual satellites in the GPS constellation. With the exception of outages, these messages are released 72 hours prior to planned maintenance.

There are 24 satellites, positioned in 6 orbital planes, circling the Earth twice a day at an altitude of 10,900 nautical miles. The orbits are tilted to the Earth's equator by 55 degrees to cover the polar regions. GPS satellites carry atomic clocks to provide accurate time used in positioning.

Definitions:

*Block is the generation of the operational satellites.
*Plane is the satellite's orbit.

* Pseudo Random Noise Code (PRN) is the unique identifying sequence code that each satellite produces. The complex code guarantees that the receiver won't accidentally pick up another satellite signal, so all the satellites can use the same frequency without jamming each other.
*Slot is the position in the plane.

```
To obtain advisories-Civilian customers:
    *By phone: (1)703 3135907
    *Radio station broadcasts: WWV & WWVH
    *INMARSAT-C broadcasts: NAVAREA IV & XII
        (see Chapter 3)
    *US Coast Guard Website Constellation Status:
        http://navcen.uscg.gov/?Do=constellationStat
        us
    *Contact/subscriptions: US Coast Guard
        Navigation Center, NAVCEN MS 7310, 7323
        Telegraph Road, Alexandria, VA 20598-7310,
        phone:}7033135900
```

To obtain advisories-Military customers:
*By phone: (1) 7033135907
*Radio station broadcasts: WWV \& WWVH
*AMHS broadcasts: NAVAREA IV, HYDROLANT,
HYRDOPAC, HYDROARC \& NAVAREA XII (see
Chapter 3)
*US Coast Guard Website Constellation Status:
http://navcen.uscg.gov/?Do=constellationStat
us
*Contact/subscriptions: GPS Operations Center, 300
O'Malley Ave, Suite 41, Colorado Springs, CO 80912-3041, phone: 719567 2541, DSN 560 2541, e-mail: gps_support@schriever.af.mil.

	Constellation Status
Plane	A through F
Slot	Minimum of 4 satellites to run GPS
SVN	The Space Vehicle Number
PRN	The designated number for each complex code the satellite produces
	Currently on Block II (IIA, IIR-M, IIF, IIR) Block Type

RADIO TIME SIGNALS

200D. U.S. Station WWV Broadcasts

Call sign: WWV
Station number: 2000
Location: 40-40-49N 105-02-27W
Broadcast Frequencies: The station radiates $10,000 \mathrm{~W}$ on 5,10 , and 15 MHz ; and 2500 W on 2.5 and 20 MHz .

Broadcast Time: Constant.
Antennas (Type \& Amount): Half-wave vertical antennas that radiate omnidirectional patterns. There are five antennas at the station site, one for each frequency.

The Breakdown: The hourly broadcast schedule:
By Phone: (303) 499-7111 (not a toll-free number, 2 min call only) Delays: using land lines within continental US time announcements are normally delayed by less than 30 ms and the stability (delay variation) is generally $<1 \mathrm{~ms}$. Using mobile phones or voice over IP networks, the delays can be as large as 150 ms . In the very rare instances when the telephone connection is made by satellite, the time is delayed by more than 250 ms.

BCD Time Code: Continuously broadcast on a 100 Hz subcarrier.
MARS Exercise announcements: 10 minutes after of the hour for about two weeks, prior to and during each exercise.

NANU/GPS status: 14 \& 15 minutes after the hour. Updated every 3 hours, typically 0000, 0300, 0600, 0900, 1200, 1500, 1800, and 2100 UTC. More frequent updates are made when necessary.
Contact information: Mailing address: NIST Radio Station WWV, 200 East Country Rd 58, Fort Collins, CO 80524. E-mail: nist.radio@boulder.nist.gov.

200E. U.S. Station WWVH Broadcasts

Call sign: WWVH

Station number: 2001
Location: 21-59-17N 159-45-47W
Broadcast Frequencies: The station radiates $10,000 \mathrm{~W}$ on 5,10 , and 15 MHz ; and 5000 W on 2.5 MHz .

Broadcast Time: Constant.
Antennas (Type \& Amount): Half-wave vertical antennas that radiate omnidirectional patterns. There are five antennas at the station site, one for each frequency.

The Breakdown: The hourly broadcast schedule:
By Phone: (808) 335-4363 (not a toll-free number, 2 min call only) Delays: using land lines within continental US time announcements are normally delayed by less than 30 ms and the stability (delay variation) is generally $<1 \mathrm{~ms}$. Using mobile phones or voice over IP networks, the delays can be as large as 150 ms . In the very rare instances when the telephone connection is made by satellite, the time is delayed by more than 250 ms .

BCD Time Code: Continuously broadcast on a 100 Hz subcarrier.

MARS Exercise announcements: 50 minutes after of the hour for about two weeks, prior to and during each exercise.

NANU/GPS status: $43 \& 44$ minutes after the hour. Updated every 3 hours, typically $0000,0300,0600,0900$, 1200, 1500, 1800, and 2100 UTC. More frequent updates are made when necessary.

RADIO TIME SIGNALS

RADIO TIME SIGNALS

(1)	(2)	(3)	(4)	(5)
No.	Name	Hours of Transmission	System	Frequency

CANADA
2020 Ottawa, Ont. (CHU). Continuous.

(See	3330 kHz, A2A, H3E, $3 \mathrm{~kW} ;$
below)	7335 kHz, A2A, H3E, $10 \mathrm{~kW} ;$
	14670 kHz, A2A, H3E, 3 kW.

DUT1: Marked seconds indicated by split pulses.
SYSTEM: 00s.: 500 ms second marker. From 01s. to 28 s .: second markers of 300 ms each. 29 s .: silence. From 30s. to 50 s .: second markers of 300 ms each. From 51 s . to 59 s .: station identification and time (+5 R). At the beginning of the hour the first second marker lasts for 1 s . and 500 ms markers for seconds 01 to 09 are omitted. A binary time code is included in second markers 31-39.
ANTENNAS: CHU broadcasts from 45-17-47N 75-45-22W using vertical antennas designed to give the best possible coverage for Canadian users.

MEXICO

 and holidays: 1755-1800.XDD: $13043 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}$.

SYSTEM: From 54m. to 55m.: "VVV DE" station call sign ("XPD" or "XDD"). From 55m. to 60m.: U.S. system, except that the second marker at 28 s. is omitted each minute.

RADIO TIME SIGNALS

(1)	(2)	(3)	(4)	(5) No.
Name	Hours of Transmission	System	Frequency	
2041	Tacubaya (XBA).	Weekdays: 0155-0200, 	1555-1600, 1755-1800; Sun. and holidays: 1755-1800.	U.S.

SYSTEM: From 54m. to 55m.: "VVV DE XBA". From 55m. to $60 \mathrm{~m} .:$ U.S. system, except that the second marker at 28 s. is omitted each minute.

VENEZUELA

2043 Observatorio Naval Caracas Continuous.
 U.S. $\quad 5000 \mathrm{kHz}, \mathrm{A} 9 \mathrm{~W}, 10 \mathrm{~kW}$.

(YVTO).
SYSTEM: From 01s. to 29 s .: second markers of 100 ms each. 30 s.: silence. From 31s. to 40 s .: second markers of 100 ms each. From 40s. to 50 s .: station identification, in Spanish. 51s. and 52s.: second markers of 100 ms each. From 52s. to 57 s .: time announcement, in Spanish. 57 s . and 59 s .: second markers of 100 ms each. 00s.: minute marker of $500 \mathrm{~ms}(800 \mathrm{~Hz})$. Second markers are 1000 Hz tone.

ECUADOR

(See
below) $\quad 1510 \mathrm{kHz}$.

0000-1200.
$3810 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, \mathrm{~A} 3 \mathrm{E}, 1 \mathrm{~kW}$.
SYSTEM: 00s.: minute marker of 300 ms . From 01 s s. to 28 s .: second markers of 100 ms each. 29 s .: silence. From 30 s . to 50 s .: second markers of 100 ms each. 51 s .: silence. From 52 s . to 58 s .: time announcement in voice. 59 s .: silence. Call sign transmitted on 3810 kHz from $59 \mathrm{~m} .-15 \mathrm{~s}$. to $59 \mathrm{~m} .-50 \mathrm{~s}$. of each hour.

RUSSIA

(See	$4996 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 5 \mathrm{~kW} ;$
below)	$9996 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 5 \mathrm{~kW} ;$
	$14996 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 8 \mathrm{~kW}$.

DUT1 AND dUT1: Marked seconds indicated by double pulse with 100 ms separation, between $10 \mathrm{~m} .-20 \mathrm{~m}$. and 40m.-50m.
SYSTEM: From 00m. to 08 m .: carrier. From 08 m . to 09 m .: silence. From 09 m . to 10 m .: call sign. From 10m. to 20m.: second markers of 100 ms each, minute markers of 500 ms each. From 20 m . to 30 m .: sub-second markers of 20 ms every 100 ms , second markers of 40 ms each, minute markers of 500 ms each. From 30 m . to 38 m .: carrier. From 38 m . to 39 m .: silence. From 39 m . to 40 m .: call sign. From 40 m . to 50 m .: second markers of 100 ms each, minute markers of 500 ms each. From 50 m . to $00 \mathrm{~m} .:$ subsecond markers of 20 ms every 100 ms , second markers of 40 ms each, minute markers of 500 ms each. Markers omitted between 56 s . and 59 s . at $14 \mathrm{~m} ., 19 \mathrm{~m} ., 24 \mathrm{~m} ., 29 \mathrm{~m} ., 44 \mathrm{~m} ., 49 \mathrm{~m} ., 54 \mathrm{~m} ., 59 \mathrm{~m}$.
TRANSMITTERS: 4996 kHz off-air 0500-1300 first Wed. each quarter. 9996 kHz off-air 0500-1300 second Wed. each quarter. 14996 kHz off-air 0500-1300 third Wed. every odd month.
2202.5 Moskva (RBU). January-June: 0252-0313, (See $66.67 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 10 \mathrm{~kW}$. 0852-0913, 1452-1513, below) 2052-2113;
July-December: 0852-0913, 2052-2113.

DUT1 AND dUT1: Marked seconds indicated by double pulse with 100 ms separation, between $00 \mathrm{~m} .-05 \mathrm{~m}$. SYSTEM: From 52 m . to 59 m .: carrier. From 59 m . to 00 m .: sub-second markers of 20 ms every 100 ms , second markers of 40 ms , minute markers of 500 ms each. From 00 m . to 05 m .: second markers of 100 ms each, minute markers of 500 ms each. From 05 m . to 06 m .: call sign. From 06 m . to 13 m .: carrier.
TRANSMITTER: Off-air 0500-1300 third Tues. each month.

RADIO TIME SIGNALS

(1)	(2)	(3)	(4)	(5)
No.	Name	Hours of Transmission	System	Frequency
2203	Nizhny Novgorod(RJH90).	Daylight savings time in effect: 0736-0755, 1436-1455,	(See below)	$25 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 300 \mathrm{~kW}$.
		1936-1955;		
		Daylight savings time not in		
effect:				
		0536-0555, 1336-1355,		
		1836-1855.		
		Not transmitted on 8th, 18th,		
		28th of each month.		

SYSTEM: From 36 m . to 37 m .: call sign. From 37 m . to 40 m .: carrier. From 40 m . to 43 m .: sub-second markers of 12.5 ms every 25 ms . From 43 m . to $52 \mathrm{~m} .:$ sub-second markers of 25 ms every 100 ms , second markers of 100 ms each, 10 -second markers of 1 s . each, minute markers of 10 s. each. From 52 m . to 55 m .: sub-second markers of 12.5 ms every 25 ms .
2205.5 Irkutsk (RTZ).

0000-2100, 2200-2400. (See $50 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 10 \mathrm{~kW}$. below)

DUT1 AND dUT1: Marked seconds indicated by double pulse with 100 ms separation, between $00 \mathrm{~m} .-05 \mathrm{~m}$. SYSTEM: From 00 m . to 05 m .: second markers of 100 ms each, minute markers of 500 ms each. From 05 m . to 06 m .: call sign. From 06 m . to 59 m .: carrier. From 59 m . to 00 m .: sub-second markers of 20 ms every 100 ms , second markers of 40 ms each, minute markers of 500 ms each.
TRANSMITTER: Transmitter off-air 0000-0800 first, third, fourth Mon. each month.
$\begin{array}{ll}\text { Khabarovsk (UQC3). } & \begin{array}{l}\text { Daylight savings time in effect: } \\ \text { 0236-0255, 0636-0655, } \\ \\ \text { 1836-1855; } \\ \text { Daylight savings time not in } \\ \text { effect: }\end{array} \\ & \text { 0036-0055, 0636-0655, } \\ & 1736-1755 . \\ & \text { Not transmitted on 10th, 20th, } \\ & \text { 30th of each month. }\end{array}$
SYSTEM: From 36 m . to $37 \mathrm{~m} .:$ call sign. From 37 m . to $40 \mathrm{~m} .:$ carrier. From 40 m . to 43 m .: sub-second markers of 12.5 ms every 25 ms . From 43 m . to 52 m .: sub-second markers of 25 ms every 100 ms , second markers of 100 ms each, 10 -second markers of 1 s . each, minute markers of 10 s . each. From 52 m . to 55 m .: sub-second markers of 12.5 ms every 25 ms .

Not transmitted on 4th, 14th,
24th of each month.
SYSTEM: From 36 m . to 37 m .: call sign. From 37 m . to 40 m .: carrier. From 40 m . to 43 m .: sub-second markers of 12.5 ms every 25 ms . From 43 m . to $52 \mathrm{~m} .:$ sub-second markers of 25 ms every 100 ms , second markers of 100 ms each, 10 -second markers of 1 s . each, minute markers of 10 s . each. From 52 m . to 55 m .: sub-second markers of 12.5 ms every 25 ms .

RADIO TIME SIGNALS

(1)	(2)	(3)	(4)	(5)
No.	Name	Hours of Transmission	System	Frequency

KYRGYZSTAN
2211 Bishkek (RJH86).

Daylight savings time in effect:	(See	$25.0 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 300 \mathrm{~kW}$.
0536-0555, 1136-1155,	below)	$25.1 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 300 \mathrm{~kW}$.
2336-2355;		$25.5 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 300 \mathrm{~kW}$.
Daylight savings time not in		$23.0 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 300 \mathrm{~kW}$.
effect:		$20.5 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 300 \mathrm{~kW}$.

0436-0455, 0936-0955, 2136-2155.

Not transmitted on 6th, 16th, 26th of each month.

SYSTEM: From 36 m . to 37 m .: call sign. From 37 m . to 40 m .: carrier. From 40 m . to 43 m .: sub-second markers of 12.5 ms every 25 ms . From 43 m . to 52 m .: sub-second markers of 25 ms every 100 ms , second markers of 100 ms each, 10 -second markers of 1 s . each, minute markers of 10 s . each. From 52 m . to 55 m .: sub-second markers of 12.5 ms every 25 ms .

GERMANY

(See
below)

SYSTEM: 00s.: MÑminute marker. From 01s. to $14 \mathrm{~s} .:$ BBK and Meteo Time information. $15 \mathrm{~s} .:$ RÑwhen backup antenna is used. 16s.: A1Ñannouncement of time system change. 17s.: Z1Ñtime system (winter). 18s.: Z2Ñtime system (summer). 19s.: A2Ñannouncement of a leap second at the next hour. 20s.: SÑstart of coded time information. From 21s. to 27s.: minute. 28s.: P1 (parity check)Ñsum of 21s. to 27s. From 29s. to 34 s .: hour. $35 \mathrm{~s} .:$ P2 (parity check)Ñsum of 29 s. to 34 s . From 36 s . to 41 s .: day of month. From 42 s . to 44 s .: day of week. From 45 s. to $49 \mathrm{~s} .:$ month. From 50s. to $57 \mathrm{~s} .:$ year ($07,08,09$ etc.). 58 s .: P3 (parity check)Ñsum of 36 s. to 57 s . 59 s .: no modulation.

UNITED KINGDOM

Anthorn (MSF). Continuous.
(See $\quad 60 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 15 \mathrm{~kW}$. below)

SYSTEM: National Physical Laboratory (NPL) Computer Time Service via Modem (NPL Truetime). NPL offers a service which allows a computer to set its clock to within $1 / 50$ th of a second by direct telephone connection to the National Time Scale at the NPL in Teddington, Middlesex. A call to the service, at any time of the day or night, allows a computer equipped with a suitable modem and software to correct its clock. The service uses a premium-rate telephone number. For further information contact the Time and Frequency Services, NPL at:
NPL Truetime Telephone: 09068516333 (UK only)
Telephone: (011) 442089436880
Fax: (011) 442089436458
E-mail: time@npl.co.uk
Internet: http://www.npl.co.uk/npl/ctm/index.html
TRANSMITTER: see the NPL Website at www.npl.co.uk/time/msf/msfoutages.html for outages due to scheduled maintenance.

RADIO TIME SIGNALS

(1)	(2)	(3)	(4)	(5) No.
Name	Hours of Transmission	System	Frequency	
2360	BBC-Radio 1.	Mon.-Fri.: 0700;	(See Sat.: 1300; Sun.: Nil.	97.7-99.8 MHz, F3E $(97.1 \mathrm{MHz}$ for Channel Islands).
		1 hr. earlier when daylight savings time in effect.		

BBC-Radio 4.

Mon.-Fri.: 0600, 0700, 0800,	(See	$198 \mathrm{kHz}, \mathrm{A} 3 \mathrm{E}, 50-400 \mathrm{~kW}$;
0900, 1000, 1100, 1200, 1300,	Below)	Tyneside: $603 \mathrm{kHz}, \mathrm{A} 3 \mathrm{E}, 2 \mathrm{~kW}$;
1400, 1500, 1600, 1700, 1900,		London: 720 kHz , A3E, 0.5 kW ;
2200;		N. Ireland: $720 \mathrm{kHz}, \mathrm{A} 3 \mathrm{E}$,
Sat.: 0700, 0800, 0900, 1000,		0.25-10 kW;
1100, 1300, 1400, 1600;		Redruth: $756 \mathrm{kHz}, \mathrm{A} 3 \mathrm{E}, 2 \mathrm{~kW}$;
Sun.: 0600, 0700, 0800, 0900,		Plymouth: $774 \mathrm{kHz}, \mathrm{A} 3 \mathrm{E}, 1 \mathrm{~kW}$;
1300, 1700, 2100.		Aberdeen: 1449 kHz , A3E, 2 kW ;
		Carlisle: $1485 \mathrm{kHz}, \mathrm{A} 3 \mathrm{E}, 1 \mathrm{~kW}$;
		92.4-94.6 MHz, F3E (94.8 MHz
		for Channel Islands).

1 hr . earlier when daylight savings time in effect.

SYSTEM: The Greenwich Time Signal (GTS) or BBC pips is a time code heard on some BBC Radio stations. The signal consists of 6 pips (short beeps) which occur on the 5 seconds leading up to the hour and on the hour itself. Each pip, or marker, is a 1 kHz tone.
From $59 \mathrm{~m} .-55 \mathrm{~s}$. to $59 \mathrm{~m} .-59 \mathrm{~s} .:$ second markers of 100 ms each. $00 \mathrm{~m} .-00 \mathrm{~s} .:$ minute marker of 500 ms .

RADIO TIME SIGNALS

(1)	(2)	(3)	(4)	(5)
No.	Name	Hours of Transmission	System	Frequency
2370	BBC-World Service.	0000, 0200, 0300, 0400, 0500.	(See below)	198 kHz .
		$\begin{aligned} & 0000,0200,0300,0600,0700, \\ & 0800,0900,1100,1200,1300, \\ & 1500,1600,1700,1900,2000, \\ & 2200,2300 . \end{aligned}$		648 kHz .
		0200, 0300, 0600, 2200, 2300.		1296 kHz .
		0400, 0500, 0600.		3955 kHz.
		0200, 0300, 0400, 0500, 0600, 0700, 1500, 1600, 1700, 1800, 1900, 2000, 2200.		6195 kHz.
		0600, 0700, 0800.		7150 kHz .
		0300, 0400.		7230 kHz .
		0000, 0200, 0300, 0700, 0800, 0900, 2000, 2200, 2300.		7325 kHz.
		$\begin{aligned} & 0200,0300,0400,0500,0600, \\ & 0700,0800,0900,1100,1200, \\ & 1300,1500,1600,1700,1800, \\ & 1900,2000,2200,2300 . \end{aligned}$		9410 kHz .
		0900, 1100, 1200, 1300, 1500.		9750 kHz .
		$\begin{aligned} & \text { 0700, 0800, 0900, 1100, 1200, } \\ & 1300,1500,1600 . \end{aligned}$		9760 kHz.
		0000, 0200, 0300, 2200, 2300.		9915 kHz .
		0000, 0200, 0300, 0400, 0500, 0600, 0700, 0800, 0900, 1100, 1200, 1300, 1500, 1600, 1700, 1800, 1900, 2000, 2200, 2300.		12095 kHz.
		0000, 0500, 0600, 0700, 0800, 0900, 1100, 1200, 1300, 1500, $1600,1700,1800,1900,2000$, 2200, 2300.		15070 kHz.
		2200, 2300.		15340 kHz .
		$\begin{aligned} & \text { 0700, 0800, 0900, 1100, 1200, } \\ & 1300,1500 . \end{aligned}$		17640 kHz .
		$\begin{aligned} & \text { 0800, 0900, 1100, 1200, 1300, } \\ & 1500,1600 . \end{aligned}$		17705 kHz .

SYSTEM: SYSTEM: The Greenwich Time Signal (GTS) or BBC pips is a time code heard on some BBC Radio stations. The signal consists of 6 pips (short beeps) which occur on the 5 seconds leading up to the hour and on the hour itself. Each pip, or marker, is a 1 kHz tone.
From $59 \mathrm{~m} .-55 \mathrm{~s}$. to $59 \mathrm{~m} .-59 \mathrm{~s}$.: second markers of 100 ms each. $00 \mathrm{~m} .-00 \mathrm{~s} .:$ minute marker of 500 ms .
NOTE: Not intended for precise use. Direct transmissions from United Kingdom will normally be received within 0.1 s . of UTC, but signals from overseas relay stations may have additional errors of up to 0.25 s .

RADIO TIME SIGNALS

(1)	(2)	(3)	(4)	(5)
No.	Name	Hours of Transmission	System	Frequency

FRANCE
2380 France Inter (Allouis) Continuous, except 0100-0500 (See $162 \mathrm{kHz}, \mathrm{G1D}$.
(TDF).

each Tues. below)

SYSTEM: From 00s. to 20 s .: second markers of 100 ms each. From 21 s. to $58 \mathrm{~s} .:$ time and date announcement. $59 \mathrm{~s} .:$ emphasized second marker of 100 ms . Other second markers are emphasized to indicate the following: 13 s . - the day preceding a holiday; 14s. - holiday; 17s. - local time is -2 B ; 18s. - local time is -1 A .

SWITZERLAND

(See
$75 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 20 \mathrm{~kW}$. below)

SYSTEM: From 00s. to 15 s .: other services information. 16 s .: AÑannouncement of time system change. 17 s .: EÑset during daylight savings time. 18s.: HÑset during standard time. 19s.: LÑannouncement. 20s.: SÑstart of coded time information. From 21s. to 27s.: minute. 28s.: P1 (parity check)Nsum of 21s. to 27s. From 29s. to 34 s .: hour. 35 s .: P2 (parity check)Ñsum of 29 s. to 34 s . From 36 s. to 41 s .: day of month. From 42 s . to 44 s .: day of week. From 45 s. to 49 s .: month. From 50 s . to 57 s .: year ($07,08,09$ etc.). $58 \mathrm{~s} .:$ P3 (parity check)Ñsum of 36 s . to 57 s .59 s .: no modulation.
Note: Carrier interruptions act as markers.
Second marker: one 100 ms interruption at beginning of each second (except 59 s .).
Minute marker: two 100 ms interruptions at beginning of each minute.
Hour marker: three 100 ms interruptions at the beginning of each hour.
12 -hour marker: four 100 ms interruptions at 00 h and 12 h .
ITALY

2410	Roma (IAM).	$\begin{aligned} & \text { Mon.-Sat.: 0730-0830, } \\ & \text { 1030-1130. } \end{aligned}$	(See below)	$5000 \mathrm{kHz}, \mathrm{A} 2 \mathrm{~A}, \mathrm{~A} 3 \mathrm{E}, 1 \mathrm{~kW}$.
		1 hr . earlier when dayli savings time in effect.		
	DUT1: Marked seconds indicated by double pulse.			
	SYSTEM: From 01s. to 59 s .: second markers of 5 ms 45 m .: station identification in morse code and Italian		minute 20m., 3	ker of 20 ms . At 00m., 15m.,

CHILE
2445 Valparaiso Playa Ancha Radiomaritima (CBV).

0055-0100, 1155-1200,
1555-1600, 1955-2000.

$$
\begin{array}{ll}
\text { U.S. } & 4228 \mathrm{kHz}, \mathrm{~A} 2 \mathrm{~A} ; \\
& 8677 \mathrm{kHz}, \mathrm{~A} 2 \mathrm{~A} .
\end{array}
$$

PERU

$0300,1300,1700,2300$.

$$
\begin{array}{ll}
\text { U.S. } & 609.5 \mathrm{kHz}, \mathrm{~J} 3 \mathrm{E} \\
& 850 \mathrm{kHz}, \mathrm{~J} 3 \mathrm{E} ; \\
& 103.9 \mathrm{MHz}, \mathrm{~J} 3 \mathrm{E} .
\end{array}
$$

SYSTEM: The hour marker of 1 s . commences at $59 \mathrm{~m} .-59 \mathrm{~s}$.

SYSTEM: The hour marker of 1 s . commences at $59 \mathrm{~m} .-59 \mathrm{~s}$.

RADIO TIME SIGNALS

(1)	(2)	(3)	(4) Hours of Transmission	(5) System
No.	Name			
INDIA				
2476	New Delhi (ATA).	$0330-1430$ (except from $0430-0830$ on Sundays).	(See below)	$10000 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, \mathrm{~A} 3 \mathrm{E}, 8 \mathrm{~kW}$.

SYSTEM: 00 m .: call sign and time in morse code. From 00 m . to 04 m .: second markers of 5 ms 1000 Hz modulation each, minute markers of 100 ms 1000 Hz modulation each. From 04 m . to 15 m .: second markers of 5 ms each, minute markers of 100 ms each. 15 m .: call sign and time in morse code. From 15 m . to 19 m .: second markers of 5 ms 1000 Hz each, minute markers of 100 ms 1000 Hz each. From 19m. to 30 m .: second markers of 5 ms each, minute markers of 100 ms each. 30 m .: call sign and time in morse code. From 30 m . to 34 m .: second markers of 5 ms 1000 Hz each, minute markers of 100 ms 1000 Hz each. From 34m. to 45 m .: second markers of 5 ms each, minute markers of 100 ms each. 45 m .: call sign and time in morse code. From 45 m . to 49 m .: second pulses of 5 ms 1000 Hz each, minute markers of 100 ms 1000 Hz each. From 49 m . to $00 \mathrm{~m} .:$ second markers of 5 ms each, minute markers of 100 ms each. All time signals are sent 50 ms in advance of UTC.

SRI LANKA

2480 Colombo (4PB). $0555-0600,1325-1330 . \quad$ English $482 \mathrm{kHz}, \mathrm{A} 2 \mathrm{~A}, 1 \mathrm{~kW}$; $8473 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 2.5 \mathrm{~kW}$.

SYSTEM: From 53m. $/ 23 \mathrm{~m}$. to $55 \mathrm{~m} . / 25 \mathrm{~m}$.: "CQ DE 4PB TIME SIGNALS AS". From $55 \mathrm{~m} . / 25 \mathrm{~m}$. to $00 \mathrm{~m} . / 30 \mathrm{~m}$.: second markers of 100 ms each, minute markers of 400 ms each.

CHINA

2485.1 Shanghai (XSG).

0256-0856.	(See	$458 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, \mathrm{~A} 2 \mathrm{~A} ;$
below)	$4290 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A} ;$	
		$6414.5 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A} ;$
		$6454 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A} ;$
	$8487 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A} ;$	
		$8502 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A} ;$
		$12871.5 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A} ;$
		$12954 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A} ;$
		$17002.4 \mathrm{kHZ}, \mathrm{A} 1 \mathrm{~A}$.

SYSTEM: From $59 \mathrm{~m} .-55 \mathrm{~s}$. to $59 \mathrm{~m} .-59 \mathrm{~s} .:$ second markers of 100 ms each. $00 \mathrm{~m} .-00 \mathrm{~s}$.: minute marker of 100 ms .
Xian (BPM).
0730-0100.
(See $\quad 2500 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, \mathrm{~A} 3 \mathrm{E}$. below)

Continuous.
Continuous.
10000 kHz, A1A, A3E.
0100-0900.
$15000 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, \mathrm{~A} 3 \mathrm{E}$.
SYSTEM: From 00m. to 10 m. : UTC second markers of 10 ms each, UTC minute markers of 300 ms each. From 10 m . to 15 m .: carrier. From 15 m . to 25 m .: UTC second markers of 10 ms each, UTC minute markers of 300 ms each. From 25 m . to 29 m .: UT1 second markers of 100 ms each, UT1 minute markers of 300 ms each. From $29 \mathrm{~m} .-00 \mathrm{~s}$. to $29 \mathrm{~m} .-40 \mathrm{~s}$.: "BPM" in morse code. From $29 \mathrm{~m} .-40 \mathrm{~s}$. to 30 m .-00s.: "BPM" and other station identification in Chinese. From 30m. to 40 m .: UTC second markers of 10 ms each, UTC minute markers of 300 ms each. From 40 m . to 45 m .: carrier. From 45 m . to 55 m .: UTC second markers of 10 ms each, UTC minute markers of 300 ms each. From 55m. to 59 m .: UT1 second markers of 100 ms each, UT1 minute markers of 300 ms each. From $59 \mathrm{~m} .-00 \mathrm{~s}$. to $59 \mathrm{~m} .-40 \mathrm{~s}$.: "BPM" in morse code. From $59 \mathrm{~m} .-40 \mathrm{~s}$. to $00 \mathrm{~m} .-00 \mathrm{~s}$.: "BPM" and other station identification in Chinese. All UTC signals are broadcast 20 ms in advance of UTC.

RADIO TIME SIGNALS

(1)	(2)	(3)		
Ho.	Name		(4) System	(5) Frequency
JAPAN				
2501	Ohtakadoya-Yama (JJY).	Continuous.	(See below)	40 kHz, A1B, 10 kW.

SYSTEM: 00s.: MÑminute marker of 200 ms . From 01s. to $08 \mathrm{~s} .:$ minutes. $09 \mathrm{~s} .:$ P1Ñposition marker of 200 ms . From 10s. to $11 \mathrm{~s} .:$ marker of 800 ms each. From 12s. to 18 s .: hours. 19 s .: P2Ñposition marker of 200 ms . From 20 s . to 21 s .: marker of 800 ms each. From 22 s . to 28 s .: days. 29 s .: P3Ñposition marker of 200 ms . From 30 s . to 33s.: days. From 34s. to 35 s .: marker of 800 ms each. 36 s .: PA1Ñ parity check. 37 s .: PA2Ñparity check. 38 s .: SU1Ñspare bit or summer time information. $39 \mathrm{~s} .:$ P4Ñposition marker of 200 ms . 40 s .: SU2Ñspare bit or summer time information. From 41s. to 48 s .: years. 49 s .: P5Ñposition marker of 200ms. From 50s. to 52 s .: day of week. 53 s .: LS1Ñleap second information. 54 s .: LS2Ñleap second information. From 55 s . to 58 s .: marker of 800 ms each. 59 s .: P0Ñposition marker of 200 ms . Note: every 15 m . and 45 m . of each hour the call sign in morse (from 40s. to 48s.) and station maintenance information (from 50s. to 55 s .) are transmitted.

Hagane-Yama (JJY). Continuous. (See $60 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~B}, 10 \mathrm{~kW}$. below)

SYSTEM: 00s.: MÑminute marker of 200 ms . From 01s. to 08 s .: minutes. $09 \mathrm{~s} .:$ P1Ñposition marker of 200 ms . From 10s. to $11 \mathrm{~s} .:$ marker of 800 ms each. From 12 s . to 18 s .: hours. 19 s .: P2Ñposition marker of 200 ms . From 20s. to 21 s .: marker of 800 ms each. From 22 s . to 28 s .: days. 29 s .: P3Ñposition marker of 200 ms . From 30 s . to 33s.: days. From 34s. to 35 s .: marker of 800 ms each. 36 s .: PA1Ñparity check. 37 s .: PA2Ñparity check. 38s.: SU1Ñspare bit or summer time information. 39s.: P4Ñposition marker of 200ms. 40s.: SU2Ñspare bit or summer time information. From 41s. to 48 s .: years. 49 s .: P5Ñposition marker of 200 ms . From 50 s . to 52 s .: day of week. 53 s .: LS1Ñleap second information. 54 s .: LS2Ñleap second information. From 55 s . to 58 s .: marker of 800 ms each. 59 s .: P0Ñposition marker of 200 ms . Note: every 15 m . and 45 m . of each hour the call sign in morse (from 40 s. to 48 s .) and station maintenance information (from 50s. to 55 s .) are transmitted.

REPUBLIC OF KOREA

$\begin{aligned} & \text { (See } \\ & \text { below) }\end{aligned} \quad 5000 \mathrm{kHz}, 2 \mathrm{~kW}$.
DUT1: Marked seconds indicated by double pulse.
SYSTEM: 00s.: minute marker of 800 ms 1800 Hz tone. From 01s. to 28 s .: second markers of 800 ms 1800 Hz tone each. 29 s.: silence. From 30s. to 52 s .: second markers of 800 ms 1800 Hz tone each. From 53s. to 58 s .: time announcement by voice. 59 s .: silence. 00 m .: hour marker of 800 ms 1500 Hz tone. A binary time code is transmitted continuously on a 100 kHz subcarrier.

PHILIPPINES

2530 Manila (DUW21). Every even hour +55 m. to U.S. $3650 \mathrm{kHz}, \mathrm{A} 1 \mathrm{~A}, 0.5 \mathrm{~kW}$. +60 m .

INDONESIA

