CHAPTER 14

INSTRUMENTS FOR CELESTIAL NAVIGATION

THE MARINE sextant

1400. Description and Use

The marine sextant measures the angle between two points by bringing the direct image from one point and a double-reflected image from the other into coincidence. Its principal use is to measure the altitudes of celestial bodies above the visible sea horizon. It may also be used to measure vertical angles to find the range from an object of known height. The marine sextant can also be used to render a visual Line of Position (LOP) by turning it on its side to horizontally measure the angular distance between two terrestrial objects. See Chapter 11- Use of Sextant in Piloting.

A marine sextant can measure angles up to approximately 120°. Originally, the term “sextant” was applied to the navigator’s double-reflecting, altitude-measuring instrument only if its arc was 60° in length, or 1/6 of a circle, permitting measurement of angles from 0° to 120°. In modern usage the term is applied to all modern navigational altitude-measuring instruments regardless of angular range or principles of operation.

1401. Optical Principles of a Sextant

When a plane surface reflects a light ray, the angle of reflection equals the angle of incidence. The angle between the first and final directions of a ray of light that has undergone double reflection in the same plane is twice the angle the two reflecting surfaces make with each other.

In Figure 1401 - Optical principle of the marine sextant, S to M is a ray of light from a celestial body.

The index mirror of the sextant is at M, the horizon glass at F, and the eye of the observer at A. The ray of light from S is reflected at mirror M, proceeds to mirror F, where it is again reflected, and then continues on to the eye of the observer. Geometrically, it can be shown that the altitude of the object S (angle α) is two times that of the angle between the mirrors (angle β). The graduations on the arc give the altitude.

1402. Micrometer Drum Sextant

Figure 1402 shows a modern marine sextant, called a micrometer drum sextant. In most marine sextants, brass or aluminum comprise the frame, A. Frames come in various designs; most are similar to this. Teeth mark the outer edge of the limb, B; each tooth marks one degree of altitude. The altitude graduations, C, along the limb, mark the arc. Some sextants have an arc marked in a strip of brass, silver, or platinum inlaid in the limb.

The index arm, D, is a movable bar of the same material as the frame. It pivots about the center of curvature of the limb. The tangent screw, E, is mounted perpendicularly on the end of the index arm, where it engages the teeth of the arc. Some sextants have an “endless tangent screw.” The release, F, is a spring-actuated clamp that keeps the tangent screw engaged with the limb’s teeth. The observer can disengage
the tangent screw and move the index arm along the limb for rough adjustment. The end of the tangent screw mounts a **micrometer drum**, G, graduated in minutes of altitude. One complete turn of the drum moves the index arm one degree along the arc. Next to the micrometer drum and fixed on the index arm is a **vernier**, H, that reads in fractions of a minute. The vernier shown is graduated into ten parts, permitting readings to \(\frac{1}{10} \) of a minute of arc (0.1'). Some sextants have verniers graduated into only five parts, permitting readings to 0.2'.

The **index mirror**, I, is a piece of silvered plate glass mounted on the index arm, perpendicular to the plane of the instrument, with the center of the reflecting surface directly over the pivot of the index arm. The **horizon glass**, J, is a piece of optical glass silvered on its half nearer the frame. It is mounted on the frame, perpendicular to the plane of the sextant. The index mirror and horizon glass are mounted so that their surfaces are parallel when the micrometer drum is set at 0°, if the instrument is in perfect adjustment. **Shade glasses**, K, of varying darkness are mounted on the sextant’s frame in front of the index mirror and horizon glass. They can be moved into the line of sight as needed to reduce the intensity of light reaching the eye.

The **telescope**, L, screws into an adjustable collar in line with the horizon glass and parallel to the plane of the instrument. Most modern sextants are provided with only one telescope. When only one telescope is provided, it is of the “erect image type,” either as shown or with a wider “object glass” (far end of telescope), which generally is shorter in length and gives a greater field of view. The second telescope, if provided, may be the “inverting type.” The inverting telescope, having one lens less than the erect type, absorbs less light, but at the expense of producing an inverted image. A small colored glass cap is sometimes provided, to be placed over the “eyepiece” (near end of telescope) to reduce glare. With this in place, shade glasses are generally not needed. A “peep sight,” or clear tube which serves to direct the line of sight of the observer when no telescope is used, may be fitted.

Sextants are designed to be held in the right hand. Some have a small light on the index arm to assist in reading altitudes. The batteries for this light are fitted inside a recess in the **handle**, M. Not clearly shown in Figure 1402 is the **tangent screw**, E, and the three legs.

There are two basic designs commonly used for mounting and adjusting mirrors on marine sextants. On the U.S. Navy Mark 3 and certain other sextants, the mirror is mounted so that it can be moved against retaining or mounting springs within its frame. Only one perpendicular adjustment screw is required. On the U.S. Navy Mark 2 and other sextants the mirror is fixed within its frame. Two perpendicular adjustment screws are required. One screw must be loosened before the other screw bearing on the same surface is tightened.

1403. Vernier Sextant

Most recent marine sextants are of the micrometer drum type, but at least two older-type sextants are still in
use. These differ from the micrometer drum sextant principally in the manner in which the final reading is made. They are called **vernier sextants**.

The **clamp screw vernier sextant** is the older of the two. In place of the modern release clamp, a clamp screw is fitted on the underside of the index arm. To move the index arm, the clamp screw is loosened, releasing the arm. When the arm is placed at the approximate altitude of the body being observed, the clamp screw is tightened. Fixed to the clamp screw and engaged with the index arm is a long tangent screw. When this screw is turned, the index arm moves slowly, permitting accurate setting. Movement of the index arm by the tangent screw is limited to the length of the screw (several degrees of arc). Before an altitude is measured, this screw should be set to the approximate midpoint of its range. The final reading is made on a vernier set in the index arm below the arc. A small microscope or magnifying glass fitted to the index arm is used in making the final reading.

The **endless tangent screw vernier sextant** is identical to the micrometer drum sextant, except that it has no drum, and the fine reading is made by a vernier along the arc, as with the clamp screw vernier sextant. The release is the same as on the micrometer drum sextant, and teeth are cut into the underside of the limb which engage with the endless tangent screw.

1404. Sextant Sun Sights

For a Sun sight, hold the sextant vertically and direct the sight line at the horizon directly below the Sun. After moving suitable shade glasses into the line of sight, move the index arm outward along the arc until the reflected image appears in the horizon glass near the direct view of the horizon. Rock the sextant (also known as “swinging the arc” or “to swing the arc”) slightly to the right and left to ensure it is perpendicular. As you rock the sextant, the image of the Sun appears to move in an arc, and you may have to turn slightly to prevent the image from moving off the horizon glass.

The sextant is vertical when the Sun appears at the bottom of the arc. This is the correct position for making the observation. The Sun’s reflected image appears at the center of the horizon glass; one half appears on the silvered part, and the other half appears on the clear part. Move the index arm with the drum or vernier slowly until the Sun appears to be resting exactly on the horizon, tangent to the lower limb. The novice observer needs practice to determine the exact point of tangency. Beginners often err by bringing the image down too far.

Some navigators get their most accurate observations by letting the body contact the horizon by its own motion, bringing it slightly below the horizon if rising, and above if setting. At the instant the horizon is tangent to the disk, the navigator notes the time. The sextant altitude is the uncorrected reading of the sextant.

1405. Sextant Moon Sights

When observing the Moon, follow the same procedure as for the Sun. Because of the phases of the Moon, the upper limb of the Moon is observed more often than that of the Sun. When the terminator (the line between light and dark areas) is nearly vertical, be careful in selecting the limb to shoot. Sights of the Moon are best made during either daylight hours or that part of twilight in which the Moon is least luminous. At night, false horizons may appear below the Moon because the Moon illuminates the water below it.

1406. Sextant Star and Planet Sights

While the relatively large Sun and Moon are easy to find with a sextant, stars and planets can be more difficult to locate because the field of view is so narrow. One of three methods may help locate a star or planet:

Method 1. Set the index arm and micrometer drum on 0° and direct the line of sight at the body to be observed. Then, while keeping the reflected image of the body in the mirrored half of the horizon glass, swing the index arm out and rotate the frame of the sextant down. Keep the reflected image of the body in the mirror until the horizon appears in the clear part of the horizon glass; then, make the observation. When there is little contrast between brightness of the sky and the body, this procedure can be difficult. If the body is “lost” while it is being brought down, it may not be recovered without starting over again.

Method 2. Direct the line of sight at the body while holding the sextant upside down. Slowly move the index arm out until the horizon appears in the horizon glass. Then invert the sextant and take the sight in the usual manner.

Method 3. Determine in advance the approximate altitude and azimuth of the body by a star finder such as No. 2102D. Set the sextant at the indicated altitude and face in the direction of the azimuth. The image of the body should appear in the horizon glass with a little searching.

When measuring the altitude of a star or planet, bring its center down to the horizon. Stars and planets have no discernible upper or lower limb; you must observe the center of the point of light. Because stars and planets have no discernible limb and because their visibility may be limited, the method of letting a star or planet intersect the horizon by its own motion is not recommended. As with the Sun and Moon, however, “swing the arc” to establish perpendicularity.

1407. Taking a Sight

Unless you have a navigation calculator, computer program, or app that will identify bodies automatically, predict expected altitudes and azimuths for up to eight bodies when preparing to take celestial sights. Choose the
stars and planets that will provide the best bearing spread. Try to select bodies with a predicted altitude between 30° and 70°. Take sights of the brightest stars first in the evening; take sights of the brightest stars last in the morning. See Chapter 18, Section 1810 - Sight Planning, for a more in depth discussion.

Occasionally, fog, haze, or other ships in a formation may obscure the horizon directly below a body which the navigator wishes to observe. If the arc of the sextant is sufficiently long, a back sight might be obtained, using the opposite point of the horizon as the reference. For this the observer faces away from the body and observes the supplement of the altitude. If the Sun or Moon is observed in this manner, what appears in the horizon glass to be the lower limb is in fact the upper limb, and vice versa. In the case of the Sun, it is usually preferable to observe what appears to be the upper limb. The arc that appears when rocking the sextant for a back sight is inverted; that is, the highest point indicates the position of perpendicularity.

If more than one telescope is furnished with the sextant, the erecting telescope is used to observe the Sun. A wider field of view is present if the telescope is not used. The collar into which the sextant telescope fits may be adjusted in or out, in relation to the frame. When moved in, more of the mirrored half of the horizon glass is visible to the navigator, and a star or planet is more easily observed when the sky is relatively bright. Near the darker limit of twilight, the telescope can be moved out, giving a broader view of the clear half of the glass, and making the less distinct horizon more easily discernible. If both eyes are kept open until the last moments of an observation, eye strain will be lessened. Practice will permit observations to be made quickly, reducing inaccuracy due to eye fatigue.

When measuring an altitude, have an assistant note and record the time if possible, with a "stand-by" warning when the measurement is almost ready, and a "mark" at the moment a sight is made. If a flashlight is needed to see the observer holds the watch in the palm of his or her left hand, leaving his or her fingers free to manipulate the tangent screw of the sextant. After making the observation, s/he notes the time as quickly as possible. The delay between completing the altitude observation and noting the time should not be more than one or two seconds.

1408. Reading the Sextant

Reading a micrometer drum sextant is done in three steps. The degrees are read by noting the position of the arrow on the index arm in relation to the arc. The minutes are read by noting the position of the zero on the vernier with relation to the graduations on the micrometer drum. The fraction of a minute is read by noting which mark on the vernier most nearly coincides with one of the graduations on the micrometer drum. This is similar to reading the time with the hour, minute, and second hands of a watch. In both, the relationship of one part of the reading to the others should be kept in mind. Thus, if the hour hand of a watch were about on "4," one would know that the time was about four o'clock. But if the minute hand were on "58," one would know that the time was 0358 (or 1558), not 0458 (or 1658). Similarly, if the arc indicated a reading of about 40°, and 58° on the micrometer drum were opposite zero on the vernier, one would know that the reading was 39° 58′, not 40° 58′. Similarly, any doubt as to the correct minute can be removed by noting the fraction of a minute from the position of the vernier.

In Figure 1408a the reading is 29° 42.5′. The arrow on the index mark is between 29° and 30°; the zero on the vernier is between 42′ and 43′; and the 0.5′ graduation on the vernier coincides with one of the graduations on the micrometer drum.

The principle of reading a vernier sextant is the same, but the reading is made in two steps. Figure 1408b shows a typical altitude setting. Each degree on the arc of this sextant is graduated into three parts, permitting an initial reading by the reference mark on the index arm to the nearest 20′ of arc. In this illustration the reference mark lies between 76° 20′ and 76° 40′, indicating a reading between these values. The reading for the fraction between 20′ and 40′ is made using the vernier, which is engraved on the index arm and has the small reference mark as its zero graduation. On this vernier, 20 graduations coincide with 19 graduations on the arc. Each graduation on the vernier is equivalent to 1/20 of one graduation of 20′ on the arc, or 0.5′, or 30′. In the illustration, the vernier graduation representing 6′ most nearly coincides with one of the graduations on the arc. Therefore, the reading is 76° 20′ + 6′ 00″ or 76° 26′ 00″. When a vernier of this type is used, any doubt as to which mark on the vernier coincides with a graduation on the arc can usually be resolved by noting the position of the vernier mark on each side of the one that seems to be in coincidence.

Negative readings, such as a negative index correction, are made in the same manner as positive readings; the various figures are added algebraically. Thus, if the three parts of a micrometer drum reading are (-)1°, 56′ and 0.3′, the total reading is (-)1° + 56′ + 0.3′ = (-)3.7′.

1409. Developing Observational Skill

A well-constructed marine sextant is capable of measuring angles with an instrument error not exceeding 0.1′. Lines of position from altitudes of this accuracy would not be in error by more than about 200 yards. However, there are various sources of error, other than instrumental, in altitudes measured by sextant. One of the principal sources is the observer.

The first fix a student celestial navigator plots is likely to be disappointing. Most navigators require a great amount of practice to develop the skill necessary for consistently good observations. But practice alone is not sufficient. Good technique should be developed early and refined
Many good pointers can be obtained from experienced navigators, but each student navigator must develop his or her own technique because one method proves successful for one observer may not be helpful to another. Also, experienced navigators have a natural tendency to judge the accuracy of their observations solely by the size of the figure formed with the intersection of the plotted lines of position. Although a small area of intersection (or a “tight fix”) may be present, it may not necessarily be an accurate reflection of the ship’s position if individual observation errors are allowed to be introduced. There are many errors, some of which are beyond the navigator’s control. Therefore, lines of position from celestial observations...
should be compared often with accurate position obtained by electronics or piloting.

Common sources of error are:

1. Time errors.
2. Sextant adjustment.
3. Improper rocking of the sextant.
4. The height of eye input may be wrong.
5. Index correction computation errors.
6. Subnormal refraction (dip) might be present.
7. Inaccurate judgment of tangency.
8. Using a false horizon.
9. Other computation errors.

Generally, it is possible to correct observation technique errors, but occasionally a personal error will persist. This error might vary as a function of the body observed, degree of fatigue of the observer, and other factors. For this reason, a personal error should be applied with caution.

To obtain greater accuracy, take a number of closely-spaced observations. Plot the resulting altitudes versus time and draw a curve through the points. Unless the body is near the celestial meridian, this curve should be a straight line. Use this graph to determine the altitude of the body at any time covered by the graph. It is best to use a point near the middle of the line. Using a navigational calculator, computer program, or app to reduce sights will yield greater accuracy because of the rounding errors inherent in the use of sight reduction tables, and because many more sights can be reduced in a given time, thus averaging out errors.

A simpler method involves making observations at equal intervals. This procedure is based upon the assumption that, unless the body is on the celestial meridian, the change in altitude should be equal for equal intervals of time. Observations can be made at equal intervals of altitude or time. If time intervals are constant, the mid time and the average altitude are used as the observation. If altitude increments are constant, the average time and mid altitude are used.

If only a small number of observations is available, reduce and plot the resulting lines of position; then adjust them to a common time. The average position of the line might be used, but it is generally better practice to use the middle line. Reject any observation considered unreliable when determining the average.

1410. Care of the Sextant

A sextant is a rugged instrument. However, careless handling or neglect can cause it unreasonable harm. If you drop it, take it to an instrument repair shop for testing and inspection. When not using the sextant, stow it in a sturdy and sufficiently padded case. Keep the sextant away from excessive heat and dampness. Do not expose it to excessive vibration. Do not leave it unattended when it is out of its case. Do not hold it by its limb, index arm, or telescope. Lift it only by its frame or handle. Do not lift it by its arc or index bar.

Next to careless handling, moisture is the sextant’s greatest enemy. Wipe the mirrors and the arc after each use. If the mirrors get dirty, clean them with lens paper and a small amount of alcohol. Clean the arc with ammonia; never use a polishing compound. When cleaning, do not apply excessive pressure to any part of the instrument.

Silica gel kept in the sextant case will help keep the instrument free from moisture and preserve the mirrors. Occasionally heat the silica gel to remove the absorbed moisture.

Rinse the sextant with fresh water if sea water gets on it. Wipe the sextant gently with a soft cotton cloth and dry the optics with lens paper.

Glass optics do not transmit all the light received because glass surfaces reflect a small portion of light incident on their face. This loss of light reduces the brightness of the object viewed. Viewing an object through several glass optics affects the perceived brightness and makes the image indistinct. The reflection also causes glare which obscures the object being viewed. To reduce this effect to a minimum, the glass optics are treated with a thin, fragile, anti-reflection coating. Therefore, apply only light pressure when polishing the coated optics. Blow loose dust off the lens before wiping them so grit does not scratch the lens.

Occasionally, oil and clean the tangent screw and the teeth on the side of the limb. Use the oil provided with the sextant or an all-purpose light machine oil. Occasionally set the index arm of an endless tangent screw at one extremity of the limb, oil it lightly, and then rotate the tangent screw over the length of the arc. This will clean the teeth and spread oil over them. When stowing a sextant for a long period, clean it thoroughly, polish and oil it, and protect its arc with a thin coat of petroleum jelly. If the mirrors need re-silvering, take the sextant to an instrument shop.

1411. Non Adjustable Sextant Errors

The non-adjustable sextant errors are prismatic error, graduation error, and centering error. The higher the quality of the instrument, the less these error will be.

Prismatic error occurs when the faces of the shade glasses and mirrors are not parallel. Error due to lack of parallelism in the shade glasses may be called shade error. The navigator can determine shade error in the shade glasses near the index mirror by comparing an angle measured when a shade glass is in the line of sight with the same angle measured when the glass is not in the line of sight. In this manner, determine and record the error for each shade glass. Before using a combination of shade glasses, determine their combined error. If certain observations require additional shading, use the colored telescope eyepiece cover. This does not introduce an error because direct and reflected rays are traveling together.
when they reach the cover and are, therefore, affected equally by any lack of parallelism of its two sides.

Graduation errors occur in the arc, micrometer drum, and vernier of a sextant which is improperly cut or incorrectly calibrated. Normally, the navigator cannot determine whether the arc of a sextant is improperly cut, but the principle of the vernier makes it possible to determine the existence of graduation errors in the micrometer drum or vernier. This is a useful guide in detecting a poorly made instrument. The first and last markings on any vernier should align perfectly with one less graduation on the adjacent micrometer drum.

Centering error results if the index arm does not pivot at the exact center of the arc’s curvature. Calculate centering error by measuring known angles after removing all adjustable errors. Use horizontal angles accurately measured with a theodolite as references for this procedure. Several readings by both theodolite and sextant should minimize errors. If a theodolite is not available, use calculated angles between the lines of sight to stars as the reference, comparing these calculated values with the values determined by the sextant. To minimize refraction errors, select stars at about the same altitude and avoid stars near the horizon. The same shade glasses, if any, used for determining index error should be used for measuring centering error.

The manufacturer normally determines the magnitude of all three non-adjustable errors and reports them to the user as instrument error. The navigator should apply the correction for this error to each sextant reading.

1412. Adjustable Sextant Error

The navigator should measure and remove the following adjustable sextant errors in the order listed:

1. Perpendicularity Error: Adjust first for perpendicularity of the index mirror to the frame of the sextant. To test for perpendicularity, place the index arm at about 35° on the arc and hold the sextant on its side with the index mirror up and toward the eye. Observe the direct and reflected views of the sextant arc, as illustrated in Figure 1412a. If the two views are not joined in a straight line, the index mirror is not perpendicular. If the reflected image is above the direct view, the mirror is inclined forward. If the reflected image is below the direct view, the mirror is inclined backward. Make the adjustment using two screws behind the index mirror.

2. Side Error: An error resulting from the horizon glass not being perpendicular to the frame is called side error. To test for side error, set the index arm at zero and direct the line of sight at a star. Then rotate the tangent screw back and forth so that the reflected image passes alternately above and below the direct view. If, in changing from one position to the other, the reflected image passes directly over the unreflected image, no side error exists. If it passes to one side, side error exists. Figure 1412b illustrates observations without side error (left) and with side error (right). Whether the sextant reads zero when the true and reflected images are in coincidence is immaterial for this test. An alternative method is to observe a vertical line, such as one edge of the mast of another vessel (or the sextant can be held on its side and the horizon used). If the direct and reflected portions do not form a continuous line, the horizon glass is not perpendicular to the frame of the sextant. A third method in-
volves holding the sextant vertically, as in observing the altitude of a celestial body. Bring the reflected image of the horizon into coincidence with the direct view until it appears as a continuous line across the horizon glass. Then tilt the sextant right or left. If the horizon still appears continuous, the horizon glass is perpendicular to the frame, but if the reflected portion appears above or below the part seen directly, the glass is not perpendicular. Make the appropriate adjustment using two screws behind the horizon glass.

3. **Collimation Error:** If the line of sight through the telescope is not parallel to the plane of the instrument, a collimation error will result. Altitudes measured will be greater than their actual values. To check for parallelism of the telescope, insert it in its collar and observe two stars 90° or more apart. Bring the reflected image of one into coincidence with the direct view of the other near either the right or left edge of the field of view (the upper or lower edge if the sextant is horizontal). Then tilt the sextant so that the stars appear near the opposite edge. If they remain in coincidence, the telescope is parallel to the frame; if they separate, it is not. An alternative method involves placing the telescope in its collar and then laying the sextant on a flat table. Sight along the frame of the sextant and have an assistant place a mark on the opposite bulkhead, in line with the frame. Place another mark above the first, at a distance equal to the distance from the center of the telescope to the frame. This second line should be in the center of the field of view of the telescope if the telescope is parallel to the frame. Adjust the collar to correct for non-parallelism.

4. **Index Error:** Index error is the error remaining after the navigator has removed perpendicularity error, side error, and collimation error. The index mirror and horizon glass not being parallel when the index arm is set exactly at zero is the major cause of index error. To test for parallelism of the mirrors, set the instrument at zero and direct the line of sight at the horizon. Adjust the sextant reading as necessary to cause both images of the horizon to come into line. The sextant’s reading when the horizon comes into line is the index error. If the index error is positive, subtract it from each sextant reading. If the index error is negative, add it to each sextant reading.

1413. **Selecting a Sextant**

Carefully match the selected sextant to its required uses. For occasional small craft or student use, a plastic sextant may be adequate. A plastic sextant may also be appropriate for an emergency navigation kit. Accurate offshore navigation requires a quality metal instrument. For ordinary use in measuring altitudes of celestial bodies, an arc of 90° or slightly more is sufficient. If back sights or determining horizontal angles are often required, purchase one with a longer arc. An experienced mariner or nautical instrument technician can provide valuable advice on the purchase of a sextant.

1414. **The Artificial Horizon**

Measurement of altitude requires an exact horizontal reference, normally provided at sea by the visible horizon. If the horizon is not clearly visible, however, a different horizontal reference is required. Such a reference is commonly termed an artificial horizon. If it is attached to, or part of, the sextant, altitudes can be measured at sea, on land, or in the air, whenever celestial bodies are available for observations.

An external artificial horizon can be improvised by a carefully leveled mirror or a pan of dark liquid. To use an external artificial horizon, stand or sit so that the celestial body is reflected in the mirror or liquid, and is also visible in direct view. With the sextant, bring the double-reflected image into coincidence with the image appearing in the liquid. For a lower limb observation of the Sun or the Moon, bring the bottom of the double-reflected image into coincidence with the top of the image in the liquid. For an upper-limb observation, bring the opposite sides into coincidence. If one image covers the other, the observation is of the center of the body.

After the observation, apply the index correction and any other instrumental correction. Then take half the remaining angle and apply all other corrections except dip (height of eye) correction, since this is not applicable. If the center of the Sun or Moon is observed, omit the correction for semidiameter.

1415. **Artificial Horizon Sextants**

Various types of artificial horizons have been used, including a bubble, gyroscope, and pendulum. Of these, the bubble has been most widely used. This type of instrument is fitted as a backup system to inertial and other positioning systems in a few aircraft, fulfilling the requirement for a self-contained, non-emitting system. On land, a skilled observer using a 2-minute averaging bubble or pendulum sextant can measure altitudes to an accuracy of perhaps 2°, (2 miles). This, of course, refers to the accuracy of measurement only, and does not include additional errors such as abnormal refraction, deflection of the vertical, computing and plotting errors, etc. In steady flight through smooth air the error of a 2-minute observation is increased to perhaps 5 to 10 miles.
INSTRUMENTS FOR CELESTIAL NAVIGATION

1416. The Marine Chronometer

Historically, the spring-driven marine chronometer was a precision timepiece used aboard ship to provide accurate time for celestial observations. A chronometer differs from a spring-driven watch principally in that it contains a variable lever device to maintain even pressure on the mainspring, and a special balance designed to compensate for temperature variations. Today, many seagoing ships no longer have chronometers on board due to highly accurate time signals provided by GPS.

A spring-driven chronometer is set approximately to Coordinated Universal Time (UTC), also referred to as Greenwich Mean Time (GMT), or Universal Time (UT), which is the international time standard used in astronomical and aviation publications, weather products, navigation, and other applications. UTC is expressed in 24-hour (military) time notation, and as with GMT it is based on the local standard time of the 0° longitude meridian which runs through Greenwich, England. A spring-driven chronometer, once set, is not reset until the instrument is overhauled and cleaned, usually at three year intervals.

The difference between UTC and chronometer time (C) is carefully determined and applied as a correction to all chronometer readings. This difference, called chronometer error (CE), is fast (F) if chronometer time is later than UTC, and slow (S) if earlier. The amount by which chronometer error changes in 1 day is called chronometer rate. An erratic rate indicates a defective instrument requiring repair.

The principal maintenance requirement is regular winding at about the same time each day. At maximum intervals of about three years, a spring-driven chronometer should be sent to a chronometer repair shop for cleaning and overhaul.

1417. Quartz Crystal Marine Chronometers

Quartz crystal marine chronometers have replaced spring-driven chronometers aboard many ships because of their greater accuracy. They are maintained on UTC directly from radio time signals. This eliminates chronometer error (CE) and watch error (WE) corrections. Should the second hand be in error by a readable amount, it can be reset electrically.

The basic element for time generation is a quartz crystal oscillator. The quartz crystal is temperature compensated and is hermetically sealed in an evacuated envelope. A calibrated adjustment capability is provided to adjust for the aging of the crystal.

The chronometer is designed to operate for a minimum of 1 year on a single set of batteries. A good marine chronometer has a built-in push button battery test meter. The meter face is marked to indicate when the battery should be replaced. The chronometer continues to operate and keep the correct time for at least 5 minutes while the batteries are changed. The chronometer is designed to accommodate the gradual voltage drop during the life of the batteries while maintaining accuracy requirements.

1418. Watches

A chronometer should not be removed from its case to time sights. Observations may be timed and ship’s clocks set with a comparing watch, which is set to chronometer time (UTC, GMT, also known as UT) and taken to the bridge wing for recording sight times. In practice, a wrist watch coordinated to the nearest second with the chronometer will be adequate.

A stop watch, either spring wound or digital, may also be used for celestial observations. In this case, the watch is started at a known UTC by chronometer, and the elapsed time of each sight added to this to obtain UT of the sight.

All chronometers and watches should be checked regularly with a radio time signal. Times and frequencies of radio time signals are listed in NGA Pub. 117, Radio Navigational Aids.

1419. Navigational Calculators

While not considered “instruments” in the strict sense of the word, certainly one of the professional navigator’s most useful tools is the navigational calculator or computer.
Calculators eliminate several potential sources of error in celestial navigation, and permit the solution of many more sights in much less time, making it possible to refine a celestial position much more accurately than is practical using mathematical or tabular methods.

Calculators also save space and weight, a valuable consideration on many craft. One small calculator can replace several heavy and expensive volumes of tables, and is inexpensive enough that there is little reason not to carry a spare for backup use should the primary one fail. The pre-programmed calculators are at least as robust in construction, probably more so, than the sextant itself, and when properly cared for will last a lifetime with no maintenance except to change batteries from time to time.

If the vessel carries a computer for other ship’s chores such as inventory control or personnel administration, there is little reason not to use it for celestial navigation. Freeware or inexpensive programs are available which take up little hard disk space and allow rapid solution of all types of celestial navigation problems. Typically they will also take care of route planning, sailings, tides, weather routing, electronic charts, and numerous other tasks.

U.S. Navy and Coast Guard navigators have access to a program called STELLA (System To Estimate Latitude and Longitude Astronomically; do not confuse with a similarly named commercial astronomy program). The Astronomical Applications Department of the U.S. Naval Observatory developed STELLA in response to a Navy requirement. STELLA can perform almanac functions, position updating/DR estimations, celestial body rise/set/transit calculations, compass error calculations, sight planning, and sight reduction; on-line help and a user’s guide are included. STELLA is now automatically distributed to each Naval ship; other Navy users may obtain a copy by contacting:

Superintendent
U.S. Naval Observatory
Code: AA/STELLA
3450 Massachusetts Ave. NW
Washington, DC, 20392-5420

By using a calculator or sight reduction program, it is possible to take and solve half a dozen or more sights in a fraction of the time it would normally take to shoot two or three and solve them by hand. This will increase the accuracy of the fix by averaging out errors in taking the sights. The computerized solution is always more accurate than tabular methods because it is free of rounding and arithmetic errors.